jt
2021-06-10 5d0d028456874576560552f5a5c4e8b801786f11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
//#define Trace
 
// ParallelDeflateOutputStream.cs
// ------------------------------------------------------------------
//
// A DeflateStream that does compression only, it uses a
// divide-and-conquer approach with multiple threads to exploit multiple
// CPUs for the DEFLATE computation.
//
// last saved: <2011-July-31 14:49:40>
//
// ------------------------------------------------------------------
//
// Copyright (c) 2009-2011 by Dino Chiesa
// All rights reserved!
//
// This code module is part of DotNetZip, a zipfile class library.
//
// ------------------------------------------------------------------
//
// This code is licensed under the Microsoft Public License.
// See the file License.txt for the license details.
// More info on: http://dotnetzip.codeplex.com
//
// ------------------------------------------------------------------
 
using System;
using System.Collections.Generic;
using System.Threading;
using HH.WMS.Utils.Ionic.Zlib;
using System.IO;
 
 
namespace HH.WMS.Utils.Ionic.Zlib
{
    internal class WorkItem
    {
        public byte[] buffer;
        public byte[] compressed;
        public int crc;
        public int index;
        public int ordinal;
        public int inputBytesAvailable;
        public int compressedBytesAvailable;
        public ZlibCodec compressor;
 
        public WorkItem(int size,
                        HH.WMS.Utils.Ionic.Zlib.CompressionLevel compressLevel,
                        CompressionStrategy strategy,
                        int ix)
        {
            this.buffer= new byte[size];
            // alloc 5 bytes overhead for every block (margin of safety= 2)
            int n = size + ((size / 32768)+1) * 5 * 2;
            this.compressed = new byte[n];
            this.compressor = new ZlibCodec();
            this.compressor.InitializeDeflate(compressLevel, false);
            this.compressor.OutputBuffer = this.compressed;
            this.compressor.InputBuffer = this.buffer;
            this.index = ix;
        }
    }
 
    /// <summary>
    ///   A class for compressing streams using the
    ///   Deflate algorithm with multiple threads.
    /// </summary>
    ///
    /// <remarks>
    /// <para>
    ///   This class performs DEFLATE compression through writing.  For
    ///   more information on the Deflate algorithm, see IETF RFC 1951,
    ///   "DEFLATE Compressed Data Format Specification version 1.3."
    /// </para>
    ///
    /// <para>
    ///   This class is similar to <see cref="HH.WMS.Utils.Ionic.Zlib.DeflateStream"/>, except
    ///   that this class is for compression only, and this implementation uses an
    ///   approach that employs multiple worker threads to perform the DEFLATE.  On
    ///   a multi-cpu or multi-core computer, the performance of this class can be
    ///   significantly higher than the single-threaded DeflateStream, particularly
    ///   for larger streams.  How large?  Anything over 10mb is a good candidate
    ///   for parallel compression.
    /// </para>
    ///
    /// <para>
    ///   The tradeoff is that this class uses more memory and more CPU than the
    ///   vanilla DeflateStream, and also is less efficient as a compressor. For
    ///   large files the size of the compressed data stream can be less than 1%
    ///   larger than the size of a compressed data stream from the vanialla
    ///   DeflateStream.  For smaller files the difference can be larger.  The
    ///   difference will also be larger if you set the BufferSize to be lower than
    ///   the default value.  Your mileage may vary. Finally, for small files, the
    ///   ParallelDeflateOutputStream can be much slower than the vanilla
    ///   DeflateStream, because of the overhead associated to using the thread
    ///   pool.
    /// </para>
    ///
    /// </remarks>
    /// <seealso cref="HH.WMS.Utils.Ionic.Zlib.DeflateStream" />
    public class ParallelDeflateOutputStream : System.IO.Stream
    {
 
        private static readonly int IO_BUFFER_SIZE_DEFAULT = 64 * 1024;  // 128k
        private static readonly int BufferPairsPerCore = 4;
 
        private System.Collections.Generic.List<WorkItem> _pool;
        private bool                        _leaveOpen;
        private bool                        emitting;
        private System.IO.Stream            _outStream;
        private int                         _maxBufferPairs;
        private int                         _bufferSize = IO_BUFFER_SIZE_DEFAULT;
        private AutoResetEvent              _newlyCompressedBlob;
        //private ManualResetEvent            _writingDone;
        //private ManualResetEvent            _sessionReset;
        private object                      _outputLock = new object();
        private bool                        _isClosed;
        private bool                        _firstWriteDone;
        private int                         _currentlyFilling;
        private int                         _lastFilled;
        private int                         _lastWritten;
        private int                         _latestCompressed;
        private int                         _Crc32;
        private HH.WMS.Utils.Ionic.Crc.CRC32             _runningCrc;
        private object                      _latestLock = new object();
        private System.Collections.Generic.Queue<int>     _toWrite;
        private System.Collections.Generic.Queue<int>     _toFill;
        private Int64                       _totalBytesProcessed;
        private HH.WMS.Utils.Ionic.Zlib.CompressionLevel _compressLevel;
        private volatile Exception          _pendingException;
        private bool                        _handlingException;
        private object                      _eLock = new Object();  // protects _pendingException
 
        // This bitfield is used only when Trace is defined.
        //private TraceBits _DesiredTrace = TraceBits.Write | TraceBits.WriteBegin |
        //TraceBits.WriteDone | TraceBits.Lifecycle | TraceBits.Fill | TraceBits.Flush |
        //TraceBits.Session;
 
        //private TraceBits _DesiredTrace = TraceBits.WriteBegin | TraceBits.WriteDone | TraceBits.Synch | TraceBits.Lifecycle  | TraceBits.Session ;
 
        private TraceBits _DesiredTrace =
            TraceBits.Session |
            TraceBits.Compress |
            TraceBits.WriteTake |
            TraceBits.WriteEnter |
            TraceBits.EmitEnter |
            TraceBits.EmitDone |
            TraceBits.EmitLock |
            TraceBits.EmitSkip |
            TraceBits.EmitBegin;
 
        /// <summary>
        /// Create a ParallelDeflateOutputStream.
        /// </summary>
        /// <remarks>
        ///
        /// <para>
        ///   This stream compresses data written into it via the DEFLATE
        ///   algorithm (see RFC 1951), and writes out the compressed byte stream.
        /// </para>
        ///
        /// <para>
        ///   The instance will use the default compression level, the default
        ///   buffer sizes and the default number of threads and buffers per
        ///   thread.
        /// </para>
        ///
        /// <para>
        ///   This class is similar to <see cref="HH.WMS.Utils.Ionic.Zlib.DeflateStream"/>,
        ///   except that this implementation uses an approach that employs
        ///   multiple worker threads to perform the DEFLATE.  On a multi-cpu or
        ///   multi-core computer, the performance of this class can be
        ///   significantly higher than the single-threaded DeflateStream,
        ///   particularly for larger streams.  How large?  Anything over 10mb is
        ///   a good candidate for parallel compression.
        /// </para>
        ///
        /// </remarks>
        ///
        /// <example>
        ///
        /// This example shows how to use a ParallelDeflateOutputStream to compress
        /// data.  It reads a file, compresses it, and writes the compressed data to
        /// a second, output file.
        ///
        /// <code>
        /// byte[] buffer = new byte[WORKING_BUFFER_SIZE];
        /// int n= -1;
        /// String outputFile = fileToCompress + ".compressed";
        /// using (System.IO.Stream input = System.IO.File.OpenRead(fileToCompress))
        /// {
        ///     using (var raw = System.IO.File.Create(outputFile))
        ///     {
        ///         using (Stream compressor = new ParallelDeflateOutputStream(raw))
        ///         {
        ///             while ((n= input.Read(buffer, 0, buffer.Length)) != 0)
        ///             {
        ///                 compressor.Write(buffer, 0, n);
        ///             }
        ///         }
        ///     }
        /// }
        /// </code>
        /// <code lang="VB">
        /// Dim buffer As Byte() = New Byte(4096) {}
        /// Dim n As Integer = -1
        /// Dim outputFile As String = (fileToCompress &amp; ".compressed")
        /// Using input As Stream = File.OpenRead(fileToCompress)
        ///     Using raw As FileStream = File.Create(outputFile)
        ///         Using compressor As Stream = New ParallelDeflateOutputStream(raw)
        ///             Do While (n &lt;&gt; 0)
        ///                 If (n &gt; 0) Then
        ///                     compressor.Write(buffer, 0, n)
        ///                 End If
        ///                 n = input.Read(buffer, 0, buffer.Length)
        ///             Loop
        ///         End Using
        ///     End Using
        /// End Using
        /// </code>
        /// </example>
        /// <param name="stream">The stream to which compressed data will be written.</param>
        public ParallelDeflateOutputStream(System.IO.Stream stream)
            : this(stream, CompressionLevel.Default, CompressionStrategy.Default, false)
        {
        }
 
        /// <summary>
        ///   Create a ParallelDeflateOutputStream using the specified CompressionLevel.
        /// </summary>
        /// <remarks>
        ///   See the <see cref="ParallelDeflateOutputStream(System.IO.Stream)"/>
        ///   constructor for example code.
        /// </remarks>
        /// <param name="stream">The stream to which compressed data will be written.</param>
        /// <param name="level">A tuning knob to trade speed for effectiveness.</param>
        public ParallelDeflateOutputStream(System.IO.Stream stream, CompressionLevel level)
            : this(stream, level, CompressionStrategy.Default, false)
        {
        }
 
        /// <summary>
        /// Create a ParallelDeflateOutputStream and specify whether to leave the captive stream open
        /// when the ParallelDeflateOutputStream is closed.
        /// </summary>
        /// <remarks>
        ///   See the <see cref="ParallelDeflateOutputStream(System.IO.Stream)"/>
        ///   constructor for example code.
        /// </remarks>
        /// <param name="stream">The stream to which compressed data will be written.</param>
        /// <param name="leaveOpen">
        ///    true if the application would like the stream to remain open after inflation/deflation.
        /// </param>
        public ParallelDeflateOutputStream(System.IO.Stream stream, bool leaveOpen)
            : this(stream, CompressionLevel.Default, CompressionStrategy.Default, leaveOpen)
        {
        }
 
        /// <summary>
        /// Create a ParallelDeflateOutputStream and specify whether to leave the captive stream open
        /// when the ParallelDeflateOutputStream is closed.
        /// </summary>
        /// <remarks>
        ///   See the <see cref="ParallelDeflateOutputStream(System.IO.Stream)"/>
        ///   constructor for example code.
        /// </remarks>
        /// <param name="stream">The stream to which compressed data will be written.</param>
        /// <param name="level">A tuning knob to trade speed for effectiveness.</param>
        /// <param name="leaveOpen">
        ///    true if the application would like the stream to remain open after inflation/deflation.
        /// </param>
        public ParallelDeflateOutputStream(System.IO.Stream stream, CompressionLevel level, bool leaveOpen)
            : this(stream, CompressionLevel.Default, CompressionStrategy.Default, leaveOpen)
        {
        }
 
        /// <summary>
        /// Create a ParallelDeflateOutputStream using the specified
        /// CompressionLevel and CompressionStrategy, and specifying whether to
        /// leave the captive stream open when the ParallelDeflateOutputStream is
        /// closed.
        /// </summary>
        /// <remarks>
        ///   See the <see cref="ParallelDeflateOutputStream(System.IO.Stream)"/>
        ///   constructor for example code.
        /// </remarks>
        /// <param name="stream">The stream to which compressed data will be written.</param>
        /// <param name="level">A tuning knob to trade speed for effectiveness.</param>
        /// <param name="strategy">
        ///   By tweaking this parameter, you may be able to optimize the compression for
        ///   data with particular characteristics.
        /// </param>
        /// <param name="leaveOpen">
        ///    true if the application would like the stream to remain open after inflation/deflation.
        /// </param>
        public ParallelDeflateOutputStream(System.IO.Stream stream,
                                           CompressionLevel level,
                                           CompressionStrategy strategy,
                                           bool leaveOpen)
        {
            TraceOutput(TraceBits.Lifecycle | TraceBits.Session, "-------------------------------------------------------");
            TraceOutput(TraceBits.Lifecycle | TraceBits.Session, "Create {0:X8}", this.GetHashCode());
            _outStream = stream;
            _compressLevel= level;
            Strategy = strategy;
            _leaveOpen = leaveOpen;
            this.MaxBufferPairs = 16; // default
        }
 
 
        /// <summary>
        ///   The ZLIB strategy to be used during compression.
        /// </summary>
        ///
        public CompressionStrategy Strategy
        {
            get;
            private set;
        }
 
        /// <summary>
        ///   The maximum number of buffer pairs to use.
        /// </summary>
        ///
        /// <remarks>
        /// <para>
        ///   This property sets an upper limit on the number of memory buffer
        ///   pairs to create.  The implementation of this stream allocates
        ///   multiple buffers to facilitate parallel compression.  As each buffer
        ///   fills up, this stream uses <see
        ///   cref="System.Threading.ThreadPool.QueueUserWorkItem(WaitCallback)">
        ///   ThreadPool.QueueUserWorkItem()</see>
        ///   to compress those buffers in a background threadpool thread. After a
        ///   buffer is compressed, it is re-ordered and written to the output
        ///   stream.
        /// </para>
        ///
        /// <para>
        ///   A higher number of buffer pairs enables a higher degree of
        ///   parallelism, which tends to increase the speed of compression on
        ///   multi-cpu computers.  On the other hand, a higher number of buffer
        ///   pairs also implies a larger memory consumption, more active worker
        ///   threads, and a higher cpu utilization for any compression. This
        ///   property enables the application to limit its memory consumption and
        ///   CPU utilization behavior depending on requirements.
        /// </para>
        ///
        /// <para>
        ///   For each compression "task" that occurs in parallel, there are 2
        ///   buffers allocated: one for input and one for output.  This property
        ///   sets a limit for the number of pairs.  The total amount of storage
        ///   space allocated for buffering will then be (N*S*2), where N is the
        ///   number of buffer pairs, S is the size of each buffer (<see
        ///   cref="BufferSize"/>).  By default, DotNetZip allocates 4 buffer
        ///   pairs per CPU core, so if your machine has 4 cores, and you retain
        ///   the default buffer size of 128k, then the
        ///   ParallelDeflateOutputStream will use 4 * 4 * 2 * 128kb of buffer
        ///   memory in total, or 4mb, in blocks of 128kb.  If you then set this
        ///   property to 8, then the number will be 8 * 2 * 128kb of buffer
        ///   memory, or 2mb.
        /// </para>
        ///
        /// <para>
        ///   CPU utilization will also go up with additional buffers, because a
        ///   larger number of buffer pairs allows a larger number of background
        ///   threads to compress in parallel. If you find that parallel
        ///   compression is consuming too much memory or CPU, you can adjust this
        ///   value downward.
        /// </para>
        ///
        /// <para>
        ///   The default value is 16. Different values may deliver better or
        ///   worse results, depending on your priorities and the dynamic
        ///   performance characteristics of your storage and compute resources.
        /// </para>
        ///
        /// <para>
        ///   This property is not the number of buffer pairs to use; it is an
        ///   upper limit. An illustration: Suppose you have an application that
        ///   uses the default value of this property (which is 16), and it runs
        ///   on a machine with 2 CPU cores. In that case, DotNetZip will allocate
        ///   4 buffer pairs per CPU core, for a total of 8 pairs.  The upper
        ///   limit specified by this property has no effect.
        /// </para>
        ///
        /// <para>
        ///   The application can set this value at any time, but it is effective
        ///   only before the first call to Write(), which is when the buffers are
        ///   allocated.
        /// </para>
        /// </remarks>
        public int MaxBufferPairs
        {
            get
            {
                return _maxBufferPairs;
            }
            set
            {
                if (value < 4)
                    throw new ArgumentException("MaxBufferPairs",
                                                "Value must be 4 or greater.");
                _maxBufferPairs = value;
            }
        }
 
        /// <summary>
        ///   The size of the buffers used by the compressor threads.
        /// </summary>
        /// <remarks>
        ///
        /// <para>
        ///   The default buffer size is 128k. The application can set this value
        ///   at any time, but it is effective only before the first Write().
        /// </para>
        ///
        /// <para>
        ///   Larger buffer sizes implies larger memory consumption but allows
        ///   more efficient compression. Using smaller buffer sizes consumes less
        ///   memory but may result in less effective compression.  For example,
        ///   using the default buffer size of 128k, the compression delivered is
        ///   within 1% of the compression delivered by the single-threaded <see
        ///   cref="HH.WMS.Utils.Ionic.Zlib.DeflateStream"/>.  On the other hand, using a
        ///   BufferSize of 8k can result in a compressed data stream that is 5%
        ///   larger than that delivered by the single-threaded
        ///   <c>DeflateStream</c>.  Excessively small buffer sizes can also cause
        ///   the speed of the ParallelDeflateOutputStream to drop, because of
        ///   larger thread scheduling overhead dealing with many many small
        ///   buffers.
        /// </para>
        ///
        /// <para>
        ///   The total amount of storage space allocated for buffering will be
        ///   (N*S*2), where N is the number of buffer pairs, and S is the size of
        ///   each buffer (this property). There are 2 buffers used by the
        ///   compressor, one for input and one for output.  By default, DotNetZip
        ///   allocates 4 buffer pairs per CPU core, so if your machine has 4
        ///   cores, then the number of buffer pairs used will be 16. If you
        ///   accept the default value of this property, 128k, then the
        ///   ParallelDeflateOutputStream will use 16 * 2 * 128kb of buffer memory
        ///   in total, or 4mb, in blocks of 128kb.  If you set this property to
        ///   64kb, then the number will be 16 * 2 * 64kb of buffer memory, or
        ///   2mb.
        /// </para>
        ///
        /// </remarks>
        public int BufferSize
        {
            get { return _bufferSize;}
            set
            {
                if (value < 1024)
                    throw new ArgumentOutOfRangeException("BufferSize",
                                                          "BufferSize must be greater than 1024 bytes");
                _bufferSize = value;
            }
        }
 
        /// <summary>
        /// The CRC32 for the data that was written out, prior to compression.
        /// </summary>
        /// <remarks>
        /// This value is meaningful only after a call to Close().
        /// </remarks>
        public int Crc32 { get { return _Crc32; } }
 
 
        /// <summary>
        /// The total number of uncompressed bytes processed by the ParallelDeflateOutputStream.
        /// </summary>
        /// <remarks>
        /// This value is meaningful only after a call to Close().
        /// </remarks>
        public Int64 BytesProcessed { get { return _totalBytesProcessed; } }
 
 
        private void _InitializePoolOfWorkItems()
        {
            _toWrite = new Queue<int>();
            _toFill = new Queue<int>();
            _pool = new System.Collections.Generic.List<WorkItem>();
            int nTasks = BufferPairsPerCore * Environment.ProcessorCount;
            nTasks = Math.Min(nTasks, _maxBufferPairs);
            for(int i=0; i < nTasks; i++)
            {
                _pool.Add(new WorkItem(_bufferSize, _compressLevel, Strategy, i));
                _toFill.Enqueue(i);
            }
 
            _newlyCompressedBlob = new AutoResetEvent(false);
            _runningCrc = new HH.WMS.Utils.Ionic.Crc.CRC32();
            _currentlyFilling = -1;
            _lastFilled = -1;
            _lastWritten = -1;
            _latestCompressed = -1;
        }
 
 
 
 
        /// <summary>
        ///   Write data to the stream.
        /// </summary>
        ///
        /// <remarks>
        ///
        /// <para>
        ///   To use the ParallelDeflateOutputStream to compress data, create a
        ///   ParallelDeflateOutputStream with CompressionMode.Compress, passing a
        ///   writable output stream.  Then call Write() on that
        ///   ParallelDeflateOutputStream, providing uncompressed data as input.  The
        ///   data sent to the output stream will be the compressed form of the data
        ///   written.
        /// </para>
        ///
        /// <para>
        ///   To decompress data, use the <see cref="HH.WMS.Utils.Ionic.Zlib.DeflateStream"/> class.
        /// </para>
        ///
        /// </remarks>
        /// <param name="buffer">The buffer holding data to write to the stream.</param>
        /// <param name="offset">the offset within that data array to find the first byte to write.</param>
        /// <param name="count">the number of bytes to write.</param>
        public override void Write(byte[] buffer, int offset, int count)
        {
            bool mustWait = false;
 
            // This method does this:
            //   0. handles any pending exceptions
            //   1. write any buffers that are ready to be written,
            //   2. fills a work buffer; when full, flip state to 'Filled',
            //   3. if more data to be written,  goto step 1
 
            if (_isClosed)
                throw new InvalidOperationException();
 
            // dispense any exceptions that occurred on the BG threads
            if (_pendingException != null)
            {
                _handlingException = true;
                var pe = _pendingException;
                _pendingException = null;
                throw pe;
            }
 
            if (count == 0) return;
 
            if (!_firstWriteDone)
            {
                // Want to do this on first Write, first session, and not in the
                // constructor.  We want to allow MaxBufferPairs to
                // change after construction, but before first Write.
                _InitializePoolOfWorkItems();
                _firstWriteDone = true;
            }
 
 
            do
            {
                // may need to make buffers available
                EmitPendingBuffers(false, mustWait);
 
                mustWait = false;
                // use current buffer, or get a new buffer to fill
                int ix = -1;
                if (_currentlyFilling >= 0)
                {
                    ix = _currentlyFilling;
                    TraceOutput(TraceBits.WriteTake,
                                "Write    notake   wi({0}) lf({1})",
                                ix,
                                _lastFilled);
                }
                else
                {
                    TraceOutput(TraceBits.WriteTake, "Write    take?");
                    if (_toFill.Count == 0)
                    {
                        // no available buffers, so... need to emit
                        // compressed buffers.
                        mustWait = true;
                        continue;
                    }
 
                    ix = _toFill.Dequeue();
                    TraceOutput(TraceBits.WriteTake,
                                "Write    take     wi({0}) lf({1})",
                                ix,
                                _lastFilled);
                    ++_lastFilled; // TODO: consider rollover?
                }
 
                WorkItem workitem = _pool[ix];
 
                int limit = ((workitem.buffer.Length - workitem.inputBytesAvailable) > count)
                    ? count
                    : (workitem.buffer.Length - workitem.inputBytesAvailable);
 
                workitem.ordinal = _lastFilled;
 
                TraceOutput(TraceBits.Write,
                            "Write    lock     wi({0}) ord({1}) iba({2})",
                            workitem.index,
                            workitem.ordinal,
                            workitem.inputBytesAvailable
                            );
 
                // copy from the provided buffer to our workitem, starting at
                // the tail end of whatever data we might have in there currently.
                Buffer.BlockCopy(buffer,
                                 offset,
                                 workitem.buffer,
                                 workitem.inputBytesAvailable,
                                 limit);
 
                count -= limit;
                offset += limit;
                workitem.inputBytesAvailable += limit;
                if (workitem.inputBytesAvailable == workitem.buffer.Length)
                {
                    // No need for interlocked.increment: the Write()
                    // method is documented as not multi-thread safe, so
                    // we can assume Write() calls come in from only one
                    // thread.
                    TraceOutput(TraceBits.Write,
                                "Write    QUWI     wi({0}) ord({1}) iba({2}) nf({3})",
                                workitem.index,
                                workitem.ordinal,
                                workitem.inputBytesAvailable );
 
                    if (!ThreadPool.QueueUserWorkItem( _DeflateOne, workitem ))
                        throw new Exception("Cannot enqueue workitem");
 
                    _currentlyFilling = -1; // will get a new buffer next time
                }
                else
                    _currentlyFilling = ix;
 
                if (count > 0)
                    TraceOutput(TraceBits.WriteEnter, "Write    more");
            }
            while (count > 0);  // until no more to write
 
            TraceOutput(TraceBits.WriteEnter, "Write    exit");
            return;
        }
 
 
 
        private void _FlushFinish()
        {
            // After writing a series of compressed buffers, each one closed
            // with Flush.Sync, we now write the final one as Flush.Finish,
            // and then stop.
            byte[] buffer = new byte[128];
            var compressor = new ZlibCodec();
            int rc = compressor.InitializeDeflate(_compressLevel, false);
            compressor.InputBuffer = null;
            compressor.NextIn = 0;
            compressor.AvailableBytesIn = 0;
            compressor.OutputBuffer = buffer;
            compressor.NextOut = 0;
            compressor.AvailableBytesOut = buffer.Length;
            rc = compressor.Deflate(FlushType.Finish);
 
            if (rc != ZlibConstants.Z_STREAM_END && rc != ZlibConstants.Z_OK)
                throw new Exception("deflating: " + compressor.Message);
 
            if (buffer.Length - compressor.AvailableBytesOut > 0)
            {
                TraceOutput(TraceBits.EmitBegin,
                            "Emit     begin    flush bytes({0})",
                            buffer.Length - compressor.AvailableBytesOut);
 
                _outStream.Write(buffer, 0, buffer.Length - compressor.AvailableBytesOut);
 
                TraceOutput(TraceBits.EmitDone,
                            "Emit     done     flush");
            }
 
            compressor.EndDeflate();
 
            _Crc32 = _runningCrc.Crc32Result;
        }
 
 
        private void _Flush(bool lastInput)
        {
            if (_isClosed)
                throw new InvalidOperationException();
 
            if (emitting) return;
 
            // compress any partial buffer
            if (_currentlyFilling >= 0)
            {
                WorkItem workitem = _pool[_currentlyFilling];
                _DeflateOne(workitem);
                _currentlyFilling = -1; // get a new buffer next Write()
            }
 
            if (lastInput)
            {
                EmitPendingBuffers(true, false);
                _FlushFinish();
            }
            else
            {
                EmitPendingBuffers(false, false);
            }
        }
 
 
 
        /// <summary>
        /// Flush the stream.
        /// </summary>
        public override void Flush()
        {
            if (_pendingException != null)
            {
                _handlingException = true;
                var pe = _pendingException;
                _pendingException = null;
                throw pe;
            }
            if (_handlingException)
                return;
 
            _Flush(false);
        }
 
 
        /// <summary>
        /// Close the stream.
        /// </summary>
        /// <remarks>
        /// You must call Close on the stream to guarantee that all of the data written in has
        /// been compressed, and the compressed data has been written out.
        /// </remarks>
        public override void Close()
        {
            TraceOutput(TraceBits.Session, "Close {0:X8}", this.GetHashCode());
 
            if (_pendingException != null)
            {
                _handlingException = true;
                var pe = _pendingException;
                _pendingException = null;
                throw pe;
            }
 
            if (_handlingException)
                return;
 
            if (_isClosed) return;
 
            _Flush(true);
 
            if (!_leaveOpen)
                _outStream.Close();
 
            _isClosed= true;
        }
 
 
 
        // workitem 10030 - implement a new Dispose method
 
        /// <summary>Dispose the object</summary>
        /// <remarks>
        ///   <para>
        ///     Because ParallelDeflateOutputStream is IDisposable, the
        ///     application must call this method when finished using the instance.
        ///   </para>
        ///   <para>
        ///     This method is generally called implicitly upon exit from
        ///     a <c>using</c> scope in C# (<c>Using</c> in VB).
        ///   </para>
        /// </remarks>
        new public void Dispose()
        {
            TraceOutput(TraceBits.Lifecycle, "Dispose  {0:X8}", this.GetHashCode());
            Close();
            _pool = null;
            Dispose(true);
        }
 
 
 
        /// <summary>The Dispose method</summary>
        /// <param name="disposing">
        ///   indicates whether the Dispose method was invoked by user code.
        /// </param>
        protected override void Dispose(bool disposing)
        {
            base.Dispose(disposing);
        }
 
 
        /// <summary>
        ///   Resets the stream for use with another stream.
        /// </summary>
        /// <remarks>
        ///   Because the ParallelDeflateOutputStream is expensive to create, it
        ///   has been designed so that it can be recycled and re-used.  You have
        ///   to call Close() on the stream first, then you can call Reset() on
        ///   it, to use it again on another stream.
        /// </remarks>
        ///
        /// <param name="stream">
        ///   The new output stream for this era.
        /// </param>
        ///
        /// <example>
        /// <code>
        /// ParallelDeflateOutputStream deflater = null;
        /// foreach (var inputFile in listOfFiles)
        /// {
        ///     string outputFile = inputFile + ".compressed";
        ///     using (System.IO.Stream input = System.IO.File.OpenRead(inputFile))
        ///     {
        ///         using (var outStream = System.IO.File.Create(outputFile))
        ///         {
        ///             if (deflater == null)
        ///                 deflater = new ParallelDeflateOutputStream(outStream,
        ///                                                            CompressionLevel.Best,
        ///                                                            CompressionStrategy.Default,
        ///                                                            true);
        ///             deflater.Reset(outStream);
        ///
        ///             while ((n= input.Read(buffer, 0, buffer.Length)) != 0)
        ///             {
        ///                 deflater.Write(buffer, 0, n);
        ///             }
        ///         }
        ///     }
        /// }
        /// </code>
        /// </example>
        public void Reset(Stream stream)
        {
            TraceOutput(TraceBits.Session, "-------------------------------------------------------");
            TraceOutput(TraceBits.Session, "Reset {0:X8} firstDone({1})", this.GetHashCode(), _firstWriteDone);
 
            if (!_firstWriteDone) return;
 
            // reset all status
            _toWrite.Clear();
            _toFill.Clear();
            foreach (var workitem in _pool)
            {
                _toFill.Enqueue(workitem.index);
                workitem.ordinal = -1;
            }
 
            _firstWriteDone = false;
            _totalBytesProcessed = 0L;
            _runningCrc = new HH.WMS.Utils.Ionic.Crc.CRC32();
            _isClosed= false;
            _currentlyFilling = -1;
            _lastFilled = -1;
            _lastWritten = -1;
            _latestCompressed = -1;
            _outStream = stream;
        }
 
 
 
 
        private void EmitPendingBuffers(bool doAll, bool mustWait)
        {
            // When combining parallel deflation with a ZipSegmentedStream, it's
            // possible for the ZSS to throw from within this method.  In that
            // case, Close/Dispose will be called on this stream, if this stream
            // is employed within a using or try/finally pair as required. But
            // this stream is unaware of the pending exception, so the Close()
            // method invokes this method AGAIN.  This can lead to a deadlock.
            // Therefore, failfast if re-entering.
 
            if (emitting) return;
            emitting = true;
            if (doAll || mustWait)
                _newlyCompressedBlob.WaitOne();
 
            do
            {
                int firstSkip = -1;
                int millisecondsToWait = doAll ? 200 : (mustWait ? -1 : 0);
                int nextToWrite = -1;
 
                do
                {
                    if (Monitor.TryEnter(_toWrite, millisecondsToWait))
                    {
                        nextToWrite = -1;
                        try
                        {
                            if (_toWrite.Count > 0)
                                nextToWrite = _toWrite.Dequeue();
                        }
                        finally
                        {
                            Monitor.Exit(_toWrite);
                        }
 
                        if (nextToWrite >= 0)
                        {
                            WorkItem workitem = _pool[nextToWrite];
                            if (workitem.ordinal != _lastWritten + 1)
                            {
                                // out of order. requeue and try again.
                                TraceOutput(TraceBits.EmitSkip,
                                            "Emit     skip     wi({0}) ord({1}) lw({2}) fs({3})",
                                            workitem.index,
                                            workitem.ordinal,
                                            _lastWritten,
                                            firstSkip);
 
                                lock(_toWrite)
                                {
                                    _toWrite.Enqueue(nextToWrite);
                                }
 
                                if (firstSkip == nextToWrite)
                                {
                                    // We went around the list once.
                                    // None of the items in the list is the one we want.
                                    // Now wait for a compressor to signal again.
                                    _newlyCompressedBlob.WaitOne();
                                    firstSkip = -1;
                                }
                                else if (firstSkip == -1)
                                    firstSkip = nextToWrite;
 
                                continue;
                            }
 
                            firstSkip = -1;
 
                            TraceOutput(TraceBits.EmitBegin,
                                        "Emit     begin    wi({0}) ord({1})              cba({2})",
                                        workitem.index,
                                        workitem.ordinal,
                                        workitem.compressedBytesAvailable);
 
                            _outStream.Write(workitem.compressed, 0, workitem.compressedBytesAvailable);
                            _runningCrc.Combine(workitem.crc, workitem.inputBytesAvailable);
                            _totalBytesProcessed += workitem.inputBytesAvailable;
                            workitem.inputBytesAvailable = 0;
 
                            TraceOutput(TraceBits.EmitDone,
                                        "Emit     done     wi({0}) ord({1})              cba({2}) mtw({3})",
                                        workitem.index,
                                        workitem.ordinal,
                                        workitem.compressedBytesAvailable,
                                        millisecondsToWait);
 
                            _lastWritten = workitem.ordinal;
                            _toFill.Enqueue(workitem.index);
 
                            // don't wait next time through
                            if (millisecondsToWait == -1) millisecondsToWait = 0;
                        }
                    }
                    else
                        nextToWrite = -1;
 
                } while (nextToWrite >= 0);
 
            } while (doAll && (_lastWritten != _latestCompressed));
 
            emitting = false;
        }
 
 
 
#if OLD
        private void _PerpetualWriterMethod(object state)
        {
            TraceOutput(TraceBits.WriterThread, "_PerpetualWriterMethod START");
 
            try
            {
                do
                {
                    // wait for the next session
                    TraceOutput(TraceBits.Synch | TraceBits.WriterThread, "Synch    _sessionReset.WaitOne(begin) PWM");
                    _sessionReset.WaitOne();
                    TraceOutput(TraceBits.Synch | TraceBits.WriterThread, "Synch    _sessionReset.WaitOne(done)  PWM");
 
                    if (_isDisposed) break;
 
                    TraceOutput(TraceBits.Synch | TraceBits.WriterThread, "Synch    _sessionReset.Reset()        PWM");
                    _sessionReset.Reset();
 
                    // repeatedly write buffers as they become ready
                    WorkItem workitem = null;
                    HH.WMS.Utils.Ionic.Zlib.CRC32 c= new HH.WMS.Utils.Ionic.Zlib.CRC32();
                    do
                    {
                        workitem = _pool[_nextToWrite % _pc];
                        lock(workitem)
                        {
                            if (_noMoreInputForThisSegment)
                                TraceOutput(TraceBits.Write,
                                               "Write    drain    wi({0}) stat({1}) canuse({2})  cba({3})",
                                               workitem.index,
                                               workitem.status,
                                               (workitem.status == (int)WorkItem.Status.Compressed),
                                               workitem.compressedBytesAvailable);
 
                            do
                            {
                                if (workitem.status == (int)WorkItem.Status.Compressed)
                                {
                                    TraceOutput(TraceBits.WriteBegin,
                                                   "Write    begin    wi({0}) stat({1})              cba({2})",
                                                   workitem.index,
                                                   workitem.status,
                                                   workitem.compressedBytesAvailable);
 
                                    workitem.status = (int)WorkItem.Status.Writing;
                                    _outStream.Write(workitem.compressed, 0, workitem.compressedBytesAvailable);
                                    c.Combine(workitem.crc, workitem.inputBytesAvailable);
                                    _totalBytesProcessed += workitem.inputBytesAvailable;
                                    _nextToWrite++;
                                    workitem.inputBytesAvailable= 0;
                                    workitem.status = (int)WorkItem.Status.Done;
 
                                    TraceOutput(TraceBits.WriteDone,
                                                   "Write    done     wi({0}) stat({1})              cba({2})",
                                                   workitem.index,
                                                   workitem.status,
                                                   workitem.compressedBytesAvailable);
 
 
                                    Monitor.Pulse(workitem);
                                    break;
                                }
                                else
                                {
                                    int wcycles = 0;
                                    // I've locked a workitem I cannot use.
                                    // Therefore, wake someone else up, and then release the lock.
                                    while (workitem.status != (int)WorkItem.Status.Compressed)
                                    {
                                        TraceOutput(TraceBits.WriteWait,
                                                       "Write    waiting  wi({0}) stat({1}) nw({2}) nf({3}) nomore({4})",
                                                       workitem.index,
                                                       workitem.status,
                                                       _nextToWrite, _nextToFill,
                                                       _noMoreInputForThisSegment );
 
                                        if (_noMoreInputForThisSegment && _nextToWrite == _nextToFill)
                                            break;
 
                                        wcycles++;
 
                                        // wake up someone else
                                        Monitor.Pulse(workitem);
                                        // release and wait
                                        Monitor.Wait(workitem);
 
                                        if (workitem.status == (int)WorkItem.Status.Compressed)
                                            TraceOutput(TraceBits.WriteWait,
                                                           "Write    A-OK     wi({0}) stat({1}) iba({2}) cba({3}) cyc({4})",
                                                           workitem.index,
                                                           workitem.status,
                                                           workitem.inputBytesAvailable,
                                                           workitem.compressedBytesAvailable,
                                                           wcycles);
                                    }
 
                                    if (_noMoreInputForThisSegment && _nextToWrite == _nextToFill)
                                        break;
 
                                }
                            }
                            while (true);
                        }
 
                        if (_noMoreInputForThisSegment)
                            TraceOutput(TraceBits.Write,
                                           "Write    nomore  nw({0}) nf({1}) break({2})",
                                           _nextToWrite, _nextToFill, (_nextToWrite == _nextToFill));
 
                        if (_noMoreInputForThisSegment && _nextToWrite == _nextToFill)
                            break;
 
                    } while (true);
 
 
                    // Finish:
                    // After writing a series of buffers, closing each one with
                    // Flush.Sync, we now write the final one as Flush.Finish, and
                    // then stop.
                    byte[] buffer = new byte[128];
                    ZlibCodec compressor = new ZlibCodec();
                    int rc = compressor.InitializeDeflate(_compressLevel, false);
                    compressor.InputBuffer = null;
                    compressor.NextIn = 0;
                    compressor.AvailableBytesIn = 0;
                    compressor.OutputBuffer = buffer;
                    compressor.NextOut = 0;
                    compressor.AvailableBytesOut = buffer.Length;
                    rc = compressor.Deflate(FlushType.Finish);
 
                    if (rc != ZlibConstants.Z_STREAM_END && rc != ZlibConstants.Z_OK)
                        throw new Exception("deflating: " + compressor.Message);
 
                    if (buffer.Length - compressor.AvailableBytesOut > 0)
                    {
                        TraceOutput(TraceBits.WriteBegin,
                                       "Write    begin    flush bytes({0})",
                                       buffer.Length - compressor.AvailableBytesOut);
 
                        _outStream.Write(buffer, 0, buffer.Length - compressor.AvailableBytesOut);
 
                        TraceOutput(TraceBits.WriteBegin,
                                       "Write    done     flush");
                    }
 
                    compressor.EndDeflate();
 
                    _Crc32 = c.Crc32Result;
 
                    // signal that writing is complete:
                    TraceOutput(TraceBits.Synch, "Synch    _writingDone.Set()           PWM");
                    _writingDone.Set();
                }
                while (true);
            }
            catch (System.Exception exc1)
            {
                lock(_eLock)
                {
                    // expose the exception to the main thread
                    if (_pendingException!=null)
                        _pendingException = exc1;
                }
            }
 
            TraceOutput(TraceBits.WriterThread, "_PerpetualWriterMethod FINIS");
        }
#endif
 
 
 
 
        private void _DeflateOne(Object wi)
        {
            // compress one buffer
            WorkItem workitem = (WorkItem) wi;
            try
            {
                int myItem = workitem.index;
                HH.WMS.Utils.Ionic.Crc.CRC32 crc = new HH.WMS.Utils.Ionic.Crc.CRC32();
 
                // calc CRC on the buffer
                crc.SlurpBlock(workitem.buffer, 0, workitem.inputBytesAvailable);
 
                // deflate it
                DeflateOneSegment(workitem);
 
                // update status
                workitem.crc = crc.Crc32Result;
                TraceOutput(TraceBits.Compress,
                            "Compress          wi({0}) ord({1}) len({2})",
                            workitem.index,
                            workitem.ordinal,
                            workitem.compressedBytesAvailable
                            );
 
                lock(_latestLock)
                {
                    if (workitem.ordinal > _latestCompressed)
                        _latestCompressed = workitem.ordinal;
                }
                lock (_toWrite)
                {
                    _toWrite.Enqueue(workitem.index);
                }
                _newlyCompressedBlob.Set();
            }
            catch (System.Exception exc1)
            {
                lock(_eLock)
                {
                    // expose the exception to the main thread
                    if (_pendingException!=null)
                        _pendingException = exc1;
                }
            }
        }
 
 
 
 
        private bool DeflateOneSegment(WorkItem workitem)
        {
            ZlibCodec compressor = workitem.compressor;
            int rc= 0;
            compressor.ResetDeflate();
            compressor.NextIn = 0;
 
            compressor.AvailableBytesIn = workitem.inputBytesAvailable;
 
            // step 1: deflate the buffer
            compressor.NextOut = 0;
            compressor.AvailableBytesOut =  workitem.compressed.Length;
            do
            {
                compressor.Deflate(FlushType.None);
            }
            while (compressor.AvailableBytesIn > 0 || compressor.AvailableBytesOut == 0);
 
            // step 2: flush (sync)
            rc = compressor.Deflate(FlushType.Sync);
 
            workitem.compressedBytesAvailable= (int) compressor.TotalBytesOut;
            return true;
        }
 
 
        [System.Diagnostics.ConditionalAttribute("Trace")]
        private void TraceOutput(TraceBits bits, string format, params object[] varParams)
        {
            if ((bits & _DesiredTrace) != 0)
            {
                lock(_outputLock)
                {
                    int tid = Thread.CurrentThread.GetHashCode();
#if !SILVERLIGHT
                    Console.ForegroundColor = (ConsoleColor) (tid % 8 + 8);
#endif
                    Console.Write("{0:000} PDOS ", tid);
                    Console.WriteLine(format, varParams);
#if !SILVERLIGHT
                    Console.ResetColor();
#endif
                }
            }
        }
 
 
        // used only when Trace is defined
        [Flags]
        enum TraceBits : uint
        {
            None         = 0,
            NotUsed1     = 1,
            EmitLock     = 2,
            EmitEnter    = 4,    // enter _EmitPending
            EmitBegin    = 8,    // begin to write out
            EmitDone     = 16,   // done writing out
            EmitSkip     = 32,   // writer skipping a workitem
            EmitAll      = 58,   // All Emit flags
            Flush        = 64,
            Lifecycle    = 128,  // constructor/disposer
            Session      = 256,  // Close/Reset
            Synch        = 512,  // thread synchronization
            Instance     = 1024, // instance settings
            Compress     = 2048,  // compress task
            Write        = 4096,    // filling buffers, when caller invokes Write()
            WriteEnter   = 8192,    // upon entry to Write()
            WriteTake    = 16384,    // on _toFill.Take()
            All          = 0xffffffff,
        }
 
 
 
        /// <summary>
        /// Indicates whether the stream supports Seek operations.
        /// </summary>
        /// <remarks>
        /// Always returns false.
        /// </remarks>
        public override bool CanSeek
        {
            get { return false; }
        }
 
 
        /// <summary>
        /// Indicates whether the stream supports Read operations.
        /// </summary>
        /// <remarks>
        /// Always returns false.
        /// </remarks>
        public override bool CanRead
        {
            get {return false;}
        }
 
        /// <summary>
        /// Indicates whether the stream supports Write operations.
        /// </summary>
        /// <remarks>
        /// Returns true if the provided stream is writable.
        /// </remarks>
        public override bool CanWrite
        {
            get { return _outStream.CanWrite; }
        }
 
        /// <summary>
        /// Reading this property always throws a NotSupportedException.
        /// </summary>
        public override long Length
        {
            get { throw new NotSupportedException(); }
        }
 
        /// <summary>
        /// Returns the current position of the output stream.
        /// </summary>
        /// <remarks>
        ///   <para>
        ///     Because the output gets written by a background thread,
        ///     the value may change asynchronously.  Setting this
        ///     property always throws a NotSupportedException.
        ///   </para>
        /// </remarks>
        public override long Position
        {
            get { return _outStream.Position; }
            set { throw new NotSupportedException(); }
        }
 
        /// <summary>
        /// This method always throws a NotSupportedException.
        /// </summary>
        /// <param name="buffer">
        ///   The buffer into which data would be read, IF THIS METHOD
        ///   ACTUALLY DID ANYTHING.
        /// </param>
        /// <param name="offset">
        ///   The offset within that data array at which to insert the
        ///   data that is read, IF THIS METHOD ACTUALLY DID
        ///   ANYTHING.
        /// </param>
        /// <param name="count">
        ///   The number of bytes to write, IF THIS METHOD ACTUALLY DID
        ///   ANYTHING.
        /// </param>
        /// <returns>nothing.</returns>
        public override int Read(byte[] buffer, int offset, int count)
        {
            throw new NotSupportedException();
        }
 
        /// <summary>
        /// This method always throws a NotSupportedException.
        /// </summary>
        /// <param name="offset">
        ///   The offset to seek to....
        ///   IF THIS METHOD ACTUALLY DID ANYTHING.
        /// </param>
        /// <param name="origin">
        ///   The reference specifying how to apply the offset....  IF
        ///   THIS METHOD ACTUALLY DID ANYTHING.
        /// </param>
        /// <returns>nothing. It always throws.</returns>
        public override long Seek(long offset, System.IO.SeekOrigin origin)
        {
            throw new NotSupportedException();
        }
 
        /// <summary>
        /// This method always throws a NotSupportedException.
        /// </summary>
        /// <param name="value">
        ///   The new value for the stream length....  IF
        ///   THIS METHOD ACTUALLY DID ANYTHING.
        /// </param>
        public override void SetLength(long value)
        {
            throw new NotSupportedException();
        }
 
    }
 
}