jt
2021-06-10 5d0d028456874576560552f5a5c4e8b801786f11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Tree.cs
// ------------------------------------------------------------------
//
// Copyright (c) 2009 Dino Chiesa and Microsoft Corporation.  
// All rights reserved.
//
// This code module is part of DotNetZip, a zipfile class library.
//
// ------------------------------------------------------------------
//
// This code is licensed under the Microsoft Public License. 
// See the file License.txt for the license details.
// More info on: http://dotnetzip.codeplex.com
//
// ------------------------------------------------------------------
//
// last saved (in emacs): 
// Time-stamp: <2009-October-28 13:29:50>
//
// ------------------------------------------------------------------
//
// This module defines classes for zlib compression and
// decompression. This code is derived from the jzlib implementation of
// zlib. In keeping with the license for jzlib, the copyright to that
// code is below.
//
// ------------------------------------------------------------------
// 
// Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright 
// notice, this list of conditions and the following disclaimer in 
// the documentation and/or other materials provided with the distribution.
// 
// 3. The names of the authors may not be used to endorse or promote products
// derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
// FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
// INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
// OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// 
// -----------------------------------------------------------------------
//
// This program is based on zlib-1.1.3; credit to authors
// Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
// and contributors of zlib.
//
// -----------------------------------------------------------------------
 
 
using System;
 
namespace HH.WMS.Utils.Ionic.Zlib
{
    sealed class Tree
    {
        private static readonly int HEAP_SIZE = (2 * InternalConstants.L_CODES + 1);
                
        // extra bits for each length code
        internal static readonly int[] ExtraLengthBits = new int[]
        {
            0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
            3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
        };
                
        // extra bits for each distance code
        internal static readonly int[] ExtraDistanceBits = new int[]
        {
            0, 0, 0, 0, 1, 1,  2,  2,  3,  3,  4,  4,  5,  5,  6,  6,
            7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
        };
                
        // extra bits for each bit length code
        internal static readonly int[] extra_blbits = new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7};
                
        internal static readonly sbyte[] bl_order = new sbyte[]{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
                
                
        // The lengths of the bit length codes are sent in order of decreasing
        // probability, to avoid transmitting the lengths for unused bit
        // length codes.
                
        internal const int Buf_size = 8 * 2;
                
        // see definition of array dist_code below
        //internal const int DIST_CODE_LEN = 512;
                
        private static readonly sbyte[] _dist_code = new sbyte[]
        {
            0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7, 
            8,  8,  8,  8,  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,
            10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
            11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
            12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
            12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
            13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 
            13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 
            14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
            14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
            14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
            14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
            15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 
            15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 
            15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 
            15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 
            0,   0, 16, 17, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 
            22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23, 
            24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 
            25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 
            26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 
            26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 
            27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 
            27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 
            28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 
            28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 
            28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 
            28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 
            29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 
            29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 
            29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 
            29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
        };
                
        internal static readonly sbyte[] LengthCode = new sbyte[]
        {
            0,   1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11,
            12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15,
            16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17,
            18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19,
            20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
            21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
            22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
            23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
            24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
            24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
            25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
            25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
            26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
            26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
            27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
            27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
        };
                
 
        internal static readonly int[] LengthBase = new int[]
        {
            0,   1,  2,  3,  4,  5,  6,   7,   8,  10,  12,  14, 16, 20, 24, 28,
            32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 0
        };
                
 
        internal static readonly int[] DistanceBase = new int[]
        {
            0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
            256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
        };
 
        
        /// <summary>
        /// Map from a distance to a distance code.
        /// </summary>
        /// <remarks> 
        /// No side effects. _dist_code[256] and _dist_code[257] are never used.
        /// </remarks>
        internal static int DistanceCode(int dist)
        {
            return (dist < 256)
                ? _dist_code[dist]
                : _dist_code[256 + SharedUtils.URShift(dist, 7)];
        }
 
        internal short[] dyn_tree; // the dynamic tree
        internal int max_code; // largest code with non zero frequency
        internal StaticTree staticTree; // the corresponding static tree
                
        // Compute the optimal bit lengths for a tree and update the total bit length
        // for the current block.
        // IN assertion: the fields freq and dad are set, heap[heap_max] and
        //    above are the tree nodes sorted by increasing frequency.
        // OUT assertions: the field len is set to the optimal bit length, the
        //     array bl_count contains the frequencies for each bit length.
        //     The length opt_len is updated; static_len is also updated if stree is
        //     not null.
        internal void  gen_bitlen(DeflateManager s)
        {
            short[] tree = dyn_tree;
            short[] stree = staticTree.treeCodes;
            int[] extra = staticTree.extraBits;
            int base_Renamed = staticTree.extraBase;
            int max_length = staticTree.maxLength;
            int h; // heap index
            int n, m; // iterate over the tree elements
            int bits; // bit length
            int xbits; // extra bits
            short f; // frequency
            int overflow = 0; // number of elements with bit length too large
                        
            for (bits = 0; bits <= InternalConstants.MAX_BITS; bits++)
                s.bl_count[bits] = 0;
                        
            // In a first pass, compute the optimal bit lengths (which may
            // overflow in the case of the bit length tree).
            tree[s.heap[s.heap_max] * 2 + 1] = 0; // root of the heap
                        
            for (h = s.heap_max + 1; h < HEAP_SIZE; h++)
            {
                n = s.heap[h];
                bits = tree[tree[n * 2 + 1] * 2 + 1] + 1;
                if (bits > max_length)
                {
                    bits = max_length; overflow++;
                }
                tree[n * 2 + 1] = (short) bits;
                // We overwrite tree[n*2+1] which is no longer needed
                                
                if (n > max_code)
                    continue; // not a leaf node
                                
                s.bl_count[bits]++;
                xbits = 0;
                if (n >= base_Renamed)
                    xbits = extra[n - base_Renamed];
                f = tree[n * 2];
                s.opt_len += f * (bits + xbits);
                if (stree != null)
                    s.static_len += f * (stree[n * 2 + 1] + xbits);
            }
            if (overflow == 0)
                return ;
                        
            // This happens for example on obj2 and pic of the Calgary corpus
            // Find the first bit length which could increase:
            do 
            {
                bits = max_length - 1;
                while (s.bl_count[bits] == 0)
                    bits--;
                s.bl_count[bits]--; // move one leaf down the tree
                s.bl_count[bits + 1] = (short) (s.bl_count[bits + 1] + 2); // move one overflow item as its brother
                s.bl_count[max_length]--;
                // The brother of the overflow item also moves one step up,
                // but this does not affect bl_count[max_length]
                overflow -= 2;
            }
            while (overflow > 0);
                        
            for (bits = max_length; bits != 0; bits--)
            {
                n = s.bl_count[bits];
                while (n != 0)
                {
                    m = s.heap[--h];
                    if (m > max_code)
                        continue;
                    if (tree[m * 2 + 1] != bits)
                    {
                        s.opt_len = (int) (s.opt_len + ((long) bits - (long) tree[m * 2 + 1]) * (long) tree[m * 2]);
                        tree[m * 2 + 1] = (short) bits;
                    }
                    n--;
                }
            }
        }
                
        // Construct one Huffman tree and assigns the code bit strings and lengths.
        // Update the total bit length for the current block.
        // IN assertion: the field freq is set for all tree elements.
        // OUT assertions: the fields len and code are set to the optimal bit length
        //     and corresponding code. The length opt_len is updated; static_len is
        //     also updated if stree is not null. The field max_code is set.
        internal void  build_tree(DeflateManager s)
        {
            short[] tree  = dyn_tree;
            short[] stree = staticTree.treeCodes;
            int elems     = staticTree.elems;
            int n, m;            // iterate over heap elements
            int max_code  = -1;  // largest code with non zero frequency
            int node;            // new node being created
                        
            // Construct the initial heap, with least frequent element in
            // heap[1]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
            // heap[0] is not used.
            s.heap_len = 0;
            s.heap_max = HEAP_SIZE;
                        
            for (n = 0; n < elems; n++)
            {
                if (tree[n * 2] != 0)
                {
                    s.heap[++s.heap_len] = max_code = n;
                    s.depth[n] = 0;
                }
                else
                {
                    tree[n * 2 + 1] = 0;
                }
            }
                        
            // The pkzip format requires that at least one distance code exists,
            // and that at least one bit should be sent even if there is only one
            // possible code. So to avoid special checks later on we force at least
            // two codes of non zero frequency.
            while (s.heap_len < 2)
            {
                node = s.heap[++s.heap_len] = (max_code < 2?++max_code:0);
                tree[node * 2] = 1;
                s.depth[node] = 0;
                s.opt_len--;
                if (stree != null)
                    s.static_len -= stree[node * 2 + 1];
                // node is 0 or 1 so it does not have extra bits
            }
            this.max_code = max_code;
                        
            // The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
            // establish sub-heaps of increasing lengths:
                        
            for (n = s.heap_len / 2; n >= 1; n--)
                s.pqdownheap(tree, n);
                        
            // Construct the Huffman tree by repeatedly combining the least two
            // frequent nodes.
                        
            node = elems; // next internal node of the tree
            do 
            {
                // n = node of least frequency
                n = s.heap[1];
                s.heap[1] = s.heap[s.heap_len--];
                s.pqdownheap(tree, 1);
                m = s.heap[1]; // m = node of next least frequency
                                
                s.heap[--s.heap_max] = n; // keep the nodes sorted by frequency
                s.heap[--s.heap_max] = m;
                                
                // Create a new node father of n and m
                tree[node * 2] = unchecked((short) (tree[n * 2] + tree[m * 2]));
                s.depth[node] = (sbyte) (System.Math.Max((byte) s.depth[n], (byte) s.depth[m]) + 1);
                tree[n * 2 + 1] = tree[m * 2 + 1] = (short) node;
                                
                // and insert the new node in the heap
                s.heap[1] = node++;
                s.pqdownheap(tree, 1);
            }
            while (s.heap_len >= 2);
                        
            s.heap[--s.heap_max] = s.heap[1];
                        
            // At this point, the fields freq and dad are set. We can now
            // generate the bit lengths.
                        
            gen_bitlen(s);
                        
            // The field len is now set, we can generate the bit codes
            gen_codes(tree, max_code, s.bl_count);
        }
                
        // Generate the codes for a given tree and bit counts (which need not be
        // optimal).
        // IN assertion: the array bl_count contains the bit length statistics for
        // the given tree and the field len is set for all tree elements.
        // OUT assertion: the field code is set for all tree elements of non
        //     zero code length.
        internal static void  gen_codes(short[] tree, int max_code, short[] bl_count)
        {
            short[] next_code = new short[InternalConstants.MAX_BITS + 1]; // next code value for each bit length
            short code = 0; // running code value
            int bits; // bit index
            int n; // code index
                        
            // The distribution counts are first used to generate the code values
            // without bit reversal.
            for (bits = 1; bits <= InternalConstants.MAX_BITS; bits++)
                unchecked {
                    next_code[bits] = code = (short) ((code + bl_count[bits - 1]) << 1);
                }
                        
            // Check that the bit counts in bl_count are consistent. The last code
            // must be all ones.
            //Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
            //        "inconsistent bit counts");
            //Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
                        
            for (n = 0; n <= max_code; n++)
            {
                int len = tree[n * 2 + 1];
                if (len == 0)
                    continue;
                // Now reverse the bits
                tree[n * 2] =  unchecked((short) (bi_reverse(next_code[len]++, len)));
            }
        }
                
        // Reverse the first len bits of a code, using straightforward code (a faster
        // method would use a table)
        // IN assertion: 1 <= len <= 15
        internal static int bi_reverse(int code, int len)
        {
            int res = 0;
            do 
            {
                res |= code & 1;
                code >>= 1; //SharedUtils.URShift(code, 1);
                res <<= 1;
            }
            while (--len > 0);
            return res >> 1;
        }
    }
}